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A Novel Framework for Improved Grasping
of Thin and Stacked Objects

Zhangli Zhou *”, Shaochen Wang

Mingyu Cai

Abstract—TIn this study, we propose a novel top—down grasping
approach for robots that combines a deep high resolution convo-
lutional neural network (DHRNet) and a multiview perception-
based trajectory planning controller (MP-PC). Unlike the
traditional encoder—decoder architecture, DHRNet preserves the
high-resolution feature maps and integrates feature maps at dif-
ferent scales to ensure maximum retention of spatial information
and its fusion with high-level semantic information. The MP-PC
continuously adapts the trajectory planning of the robotic end-
effector based on the outputs of the DHRNet in order to respond
to situations with low confidence in the grasping detection. As a
result, it improves the smoothness and accuracy of the trajectory
and avoids entering singularities. We evaluate the performance
of the DHRNet on the Cornell and Jacquard grasping datasets,
achieving accuracies of 99.50% and 94.80%, respectively. In
addition, the framework outperformed other methods in real-
world experiments using a 7 degrees of freedom Franka Emika
Panda robot, especially in scenarios with stacked and thin objects.
The codes for this approach are available at https://github.com/
USTCzzl/DHRNet-MP-PC/tree/master.

Impact Statement—Robot grasping technology plays a pivotal
role in achieving robot intelligence and autonomy. It has great
potential in enhancing the efficiency of intelligent manufacturing
and alleviates human workload. However, existing approaches
do not perform well in grasping thin and stacked objects. It is
arguable that such limitations stem mainly from the compromised
accuracy in spatial detection, which leads to unnecessary explo-
ration of motion directions, and thereby increases the possibility
of encountering singularity. To address these challenges, we
propose a novel grasping framework that exceeds current state-
of-the-art methods in most scenarios and effectively tackles the
issues associated with grasping thin and stacked objects. The
efficacy of our proposed framework has been validated through
extensive experiments.

Index Terms—Grasp detection, motion planning, robotic
grasping.
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I. INTRODUCTION

OBOTIC grasping is a fundamental research area in

robotics, with a critical role in enabling robots to perform
versatile and complex tasks [1], [2]. The ultimate goal of this
field is to empower robots with the ability to grasp and ma-
nipulate objects with precision, dexterity, and reliability, which
are essential skills for various real-world applications such as
product assembly and object sorting [3], [4]. The initial stage
of robotic grasping involves detecting the graspable regions of
an object, and the precision of this step is a crucial factor that
can determine the success or failure of the entire grasping task.
Therefore, researchers have been exploring various approaches
to improve the accuracy of grasp detection, such as using deep
learning techniques, multisensor fusion, and visual servoing.
These methods aim to extract relevant features from objects and
the surrounding environment to determine optimal trajectories
and grasp poses.

Recent research has made significant strides in grasp de-
tection, with approaches based on convolutional neural net-
works (CNNs) garnering considerable attention [5], [6], [7],
[81, [9], [10], [11]. Such methods have exhibited remarkable
performance on various grasping datasets, including Cornell
[12], Jacquard [13], and GraspNet-1Billion [14]. Meanwhile,
advancements in grasp detection models and computational
hardware have significantly reduced the time required for vi-
sually detecting grasps. Previously, detection time could take
tens of seconds [12], but with recent improvements, it can now
take less than a second [15], or even a fraction of a second
[9]. As a consequence, grasp detection is no longer a ma-
jor bottleneck for the robotic arm during gripping execution,
enabling grasp detection from multiple viewpoints with little
impact on overall execution time. Now, the reaching action has
become an essential component of the grasping pipeline, rather
than just a mechanical requirement. Previous research [8], [15]
has demonstrated that this approach is an effective solution to
the challenge of grasping objects in cluttered environments.
However, we found that existing methods do not perform well
when dealing with stacked and thin objects.

As illustrated in Fig. 1, on the left side, multiple objects are
stacked together, and due to prediction bias, the end-effector
collides with other objects, leading to a failed grasp. On the
right side, the object is thin and has a color similar to the back-
ground in the initial stage, which makes it challenging for the
grasp detection algorithm to provide effective informative data.
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(b)

Fig. 1. Two common cases that existing grasping methods fail. (a) Stacked
objects: stacked objects can lead to irrational grasping predictions (green
rectangles represent predicted grasping positions and poses). (b) Thin objects:
the thin object is hard to be detected in the initial phase, leading to the issue
of entering a singularity and thus unable to continue completing the grasp.
The blue ellipses reflect the ability of the end-effector to move in different
directions in the current configuration space. The end-effector outside the blue
ellipse means the arm is entering the singularity. The top-right subplot is a
real-time heat map of the quality of the grasp.

Consequently, during unconfined exploration, the robotic arm
may experience singularities. This could lead to difficulties in
achieving the desired target position necessary to successfully
grasp an object. We speculate that the main reason for these
two cases is the loss of spatial resolution of the feature map
due to downsampling, and the subsequent upsampling process
may not accurately compensate for the lost spatial information,
leading to failure in the grasping process. In addition, the end-
effector of the robot arm is far from the target object at the
initial position and cannot give reasonable advice for trajectory
planning, so the robot arm explores freely, which easily leads to
the robot arm activating the protection mechanism or entering
the singularity point.

In this study, we introduce a novel neural network architec-
ture that maintains a high-resolution feature map throughout
the entire process. Our parallel-branch structure preserves a
high-resolution representation while frequently exchanging in-
formation between resolutions. Our approach not only achieves
state-of-the-art performance on several mainstream datasets
(e.g., 99.5% in Cornell! [12] and 94.8% in Jacquard [13]) but
also exhibits superior performance in various grasping-related
complex applications in physical environments. In addition,
we developed a new multiview perceptual planning controller
(MP-PC), which can dynamically adjust the speed of end exe-
cution according to the information gain obtained in the grasp-
ing pipeline, improve the smoothness of the trajectory, and
effectively avoid singularities. Experiments in physical envi-
ronments have confirmed that our controller can effectively
improve the success rate of grasping thin, stacked objects.

The main contribution of this article can be summarized
as follows.

1) We present a novel network architecture DHRNet de-

signed for thin and stacked object planar graspingtasks.

!Cornell dataset:http://pr.cs.cornell.edu/grasping/rect_data/data.php.
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Our approach is novel in its utilization of high-resolution
feature maps, making it one of the first attempts to incor-
porate such maps into the field of robotic grasping.

2) We propose a MP-PC in the grasping pipeline, which can
improve trajectory smoothness and accuracy and reduce
the risk of entering singularities.

3) Physical experiments have been conducted to validate the
superiority of our proposed model in terms of perfor-
mance. Our results indicate that our method outperforms
existing approaches in terms of accuracy and robustness.

II. RELATED WORKS

Grasp detection is the first and very important step for the
robot to complete grasping. Accurately determining the ap-
propriate grasping pose and locating the position of an object
is essential for stable and robust robotic grasping. Grasp de-
tection leverages camera images to infer the grasping pose of
the robot manipulator. Previous works [16], [17] mainly relied
on geometry-driven techniques that analyzed object contours
to identify grasping points. These methods assumed that the
object’s geometric model was always available, but prepar-
ing CAD models for graspable objects is impractical for real-
time implementation.

Recently, deep learning methods have been successfully ap-
plied in visual grasping tasks in real time [6], [18], [19], [20],
[21], [22], [23], [24]. One of the earliest works that introduced
deep neural networks to grasp detection is [12], which used
a two-stage strategy to find possible grasping candidates and
evaluate their quality. However, this method suffers from rel-
atively slow speed due to the numerous grasping proposals.
In recent years, many researchers have utilized convolutional
neural networks to generate proposals for a bounding box
and estimate the grasp pose of objects. For instance, Redmon
and Angelova [6] used an Alexnet-like CNN architecture to
regress grasping poses, while Kumra and Kanan [18] incorpo-
rated multimodal information including depth and RGB data
using ResNet-50 as a backbone to improve grasp performance.
Additionally, CNN-based grasp quality networks [25], [26]
have been proposed to evaluate and predict the robustness of
grasp candidates. Morrison et al. [9] developed GG-CNN, a
fully convolutional neural network that provides a lightweight
and real-time solution for visual grasping. Wang et al. [15]
proposed a new architecture based on vision transform to ad-
dress the loss of long-term dependency in feature extraction in
current CNN-based grasp detection methods. Cortes et al. [27]
proposed an imitation learning algorithm incorporating instance
segmentation to support a simplified control scheme for soft
gripper grasping objects with arbitrary poses. Zhang et al. [19]
developed a grasping attentional convolutional neural network
via real-time robot observation and force-torque feedback. Yang
et al. [28] propose a novel lightweight generative convolutional
neural network with grasp priority called GP-Net for multiob-
ject grasping in densely stacked environments.

The successful execution of robotic grasping depends heavily
on recent advances in computer vision, which have led to im-
provements in feature extraction methods and the development
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of better models for popular datasets. However, detecting a
viable grasp is just the first step in the grasp pipeline, and
subsequent motion planning is required for successful grasping.
Fortunately, modern grasp detection methods have dramatically
increased in speed, allowing for multiple detections throughout
the pipeline and adjusting motion planning based on informa-
tion gained from different viewpoints. This enables robots to
use active sensing techniques to plan the next optimal action
and improve their ability to grasp objects in complex scenar-
ios. Common strategies for active perception in robotics in-
volve planning the next best action that efficiently minimizes
measurement uncertainty or maximizes information gain, often
using metrics such as Shannon entropy or KL divergence. These
approaches enable the robot to intelligently select the most
valuable information to gather and to leverage this information
to improve the overall success of the grasping task.

Morrison et al. [9] introduced a visual grasp detection system
that generates a pixelwise distribution of grasp pose estimates
and then identifies the next best view location based on this
information. On the other hand, Gualtieri and Platt [29] apply
active perception directly to grasp detection by computing a
distribution of viewpoints for object classes that are likely to
improve the quality of detected grasps. However, when the
target object is thin, it becomes challenging to find the next
best view by maximizing the information gain through KL
entropy because the depth difference is not obvious, and the
robot may fall into singularities, causing it to stop abruptly or
start a protection procedure.

III. FRAMEWORK

In this section, we present a comprehensive framework for
robotic grasping, consisting of two pivotal components: the
grasping detection algorithm, DHRNet, and the motion plan-
ning controller, MP-PC. DHRNet offers a more robust and
accurate approach for grasp detection, while MP-PC is a motion
planning controller that can adjust the motion planning strategy
based on the detection information.

To address challenging scenarios, such as grasping thin
or stacked objects, we have deeply integrated two compo-
nents to enable the robot to cope with a variety of situations.
In this section, we first introduce the representation method
of the grasping problem in Section III-A. Next, we introduce
the network architecture of our proposed deep hierarchical
reinforcement learning network (DHRNet) in Section III-B.
Finally, we present our motion planning controller, MP-PC, in
Section ITI-C.

A. Grasp Representation

Autonomous visual grasping tasks typically involve collect-
ing visual images of an object through sensory input and pro-
cessing them to generate an effective grasp configuration that
maximizes the probability of success. In the case of a parallel-
plate gripper, the grasp can be represented as a four-tuple, as
formulated by Jiang et al. [9], given by

g=1{p.0,w,q} )
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where p = (x, y, z) denotes gripper’s center position in Carte-
sian coordinates, # denotes gripper’s rotation around the z axis,
and w denotes the required gripper width, respectively. In ad-
dition, a scalar quality measure ¢ represents the chances of
successful grasp.

Given a 2.5-D depth image I € R¥>*W with height H and
width W taken from a camera with intrinsic matrix K, the grasp
in I is described by

g ={s,0" v, q} )
where s = (u,v) is the center point in the image coordinates
O;, ¢’ is the rotation in the camera reference frame O., and w’
is the grasp width in the image coordinates O;. A grasp in the
image space g’ can be converted to a grasp in world coordinates
g by applying a sequence of known transforms

g= Lew (Lic(g/)) 3

where L., transforms from the camera frame to the world
(robot) frame and L. transforms from 2-D image coordinates
O; to the 3-D camera frame O, based on the camera intrinsic
matrix K and known calibration between the robot and camera.

We refer to the set of grasps in the image space as the grasp
map, which is denoted as

G=(Q,0,W)cR>**xW, “4)

The grasp map G estimates the parameters of a set of grasps,
executed at the Cartesian point p, corresponding to each pixels.
We represent the grasp map G as a set of images.

1) Q is an image describing the quality of a grasp executed
at each point (u, v). The value is a scalar within the range
[0, 1] where a value closer to 1 indicates higher grasp
quality, i.e., higher chance of successful grasp.

2) O represents the grasp angle that should be executed at
each point. Given the symmetry of the antipodal grasp
around the +7 /2 radians, the angles are provided in the
range of [—7/2,7/2].

3) W indicates the width of the gripper to be employed
at each point. To achieve depth invariance, we set the
range of the variable w to [0, 150] pixels, which can be
converted to a physical measurement utilizing the depth
camera parameters and the measured depth.

Instead of sampling the input image to create grasp can-
didates, the grasp point g’ is computed for each pixel in the
depth image I directly. Specifically, we define a function M
to retrieve the grasp point from the depth image and convert
it to a function M of the grasp map expressed in the image
coordinates: M(I) = G. The best grasp is then calculated in
the image space g’* = maxG, which yields the equivalent best

grasp in world coordinates g* by (3).

Loss Function: We propose DHRNet to approximate the
complex function M : T — G. Let M denote a neural network
with ¢ representing the weights of the network. We show
that My(I) = (Qg, ®y, W) ~ M(I) can be learned with a
training set of inputs I and the corresponding outputs G by
applying the loss function L as

0 = argmin £ (G, M, (Ir)). 5)
¢
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Fig. 2. Network architecture of DHRNet.

B. DHRNet Architecture

In this article, we propose a novel encoder—decoder architec-
ture for robotic perception that distinguishes itself from previ-
ous work [9], [12], [18]. Our approach not only achieves better
results in the dataset (Table II) but also enables faster extraction
of the features that need attention for grasping (Fig. 8) and can
effectively deal with thin objects and stacked objects.

As illustrated in Fig. 2, DHRNet stands apart from traditional
CNNs by preserving a relatively high-resolution feature map
throughout the network. DHRNet is structured into four stages,
each containing parallel blocks with varying feature resolu-
tions, and each block is a residual block. We achieve informa-
tion interaction between different blocks by using a FuseLayer
which transitions features between the high-resolution and low-
resolution branches via up-sampling and down-sampling oper-
ations. Specifically, we employ a convolutional kernel 3 x 3
with stride 2 to decrease the resolution of the feature map
and bilinear interpolation for up-sampling. The high-resolution
representation is obtained by parallel mixing different reso-
lution convolutional layers. By parallelly connecting high-to-
low-resolution convolutions and iteratively performing fusion
operations between parallel blocks, our approach preserves the
high-resolution representation.

Our model has two main characteristics: 1) it utilizes parallel
connections from high-resolution to low-resolution throughout
all phases of the model, and 2) it facilitates the exchange
of information across different resolutions to enrich semantic
information. The network begins with a convolutional stem
block and gradually stacks convolutional blocks with different
resolutions, connecting them in parallel. As a result, the features
learned by DHRNet are semantically and spatially strong. This
is because the convolutional blocks of different resolutions are
linked in parallel rather than serially, which is more benefi-
cial for learning accurate spatial position information. More-
over, our model consistently maintains a high-resolution feature
representation, instead of shrinking the feature maps as in

L)
i\

Zmin

i
il

Fig. 3.
planning.

Set of possible positions of the robot end-effectors in motion

traditional encoders. Furthermore, the information is continu-
ously fused among the different branches, providing a wealth
of information at the semantic level.

C. MP-PC

Besides the DHRNet introduced in the previous section for
grasping prediction, we also need a closed-loop motion plan-
ning algorithm for complex scenarios. Usually, the motion
planning algorithm requires the end-effector to operate with a
height within the range of 2y, t0 Zmax. Suppose the maximum
horizontal and maximum vertical velocities of the end-effector
are v; and v, respectively, and the initial position is in a circle
centered at (0, 0, 2y, ) With a radius r, then the set of all possible
positions of the end-effector constitutes a circle table as shown
in Fig. 3. In existing algorithms, the grasp detection algorithm
is usually integrated into the grasp pipeline. When the height
of the end-effector is greater than z.,;,, DHRNet calculates an
optimal grasp prediction based on the image from the current
point of view ¢ and gives the distribution of information entropy
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to calculate the horizontal velocity of the end-effector. This type
of motion planning algorithm is often referred to as an active
planning algorithm, and a well known method is multiview
picking (MVP) [9], which is proven to be effective in solving
the clutter and occlusion challenges. However, we found that
if the grasping target is thin, the robotic arm can only explore
along a random direction at the beginning stage because of the
long distance of the camera to the target object and cannot yield
correct grasping predictions or information entropy distribution.
This can lead to the loss of the target field of view or even
singularities. Motivated by this issue, we propose MP-PC to
tackle the shortcomings of the previous method. The overall
flow chart of MP-PC is shown in Algorithm 1. Before pre-
senting the algorithm in Section III.C.2, we describe how the
controller gets the information entropy distribution from the
images and how the horizontal velocity v, of the end-effector
is calculated in Section III.C.1.

1) Information_Gain: To combine observations along the
viewpoint trajectory, we first represent the workspace of the
robot as a two-dimensional raster grid map M. The grid map
consists of J x K cells and each cell corresponds to a physical
region of size u x u. Within each cell (j, k), the grasp quality
observations ¢ is discretized into N, intervals and represented
in a vector q; ;. Similarly, combined grasp quality and angle
observations (g, ) are discretized into a two-dimensional his-
togram mj; 3, consisting of N, x Ny intervals. These vectors
capture the distribution of observations within each point and
serve as the foundation for our information gain approach.

A grasp in the cell (j, k) is parameterized by the mean of the
observations within the cell

8k = (Cjks 0.k Wy ks i) (6)

where c; ; is the physical position at the center of the cell and
the mean observations for a cell are calculated as

Nq
1 Ny

>.q Ny

ng=1

@)

The mean angle § and mean grasp width @ can be calculated
by weighting the corresponding grasp quality observations as

Ny Ng o no ng
_ Znezl anzl SIN N TN, My, pn,
@ = arctan N ~ ,
0 q ng Ng
Soney ey cos($7) i,

w:%Zw. ©)

Our controller is based on an information gain approach,
where viewpoints are selected to minimize the uncertainty in the
grasp pose observations. More specifically, we aim to decrease
the entropy of grasp quality observations in M that correspond
to high-quality grasps. The entropy of grasp quality observa-
tions in a single grid cell can be computed as

®)

N,
q qn qTL
H(q)=- . log< “). (10)
PN SR or

Entropy in the distribution of grasp quality measurements
emerges as a promising indicator for predicting informative

IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 5, NO. 6, JUNE 2024

viewpoints. To simplify the calculation of the expected infor-
mation gain, we adopt the widely accepted assumption that
the total entropy of the observed region will provide a good
approximation to calculate the expected information gain [30].
In essence, viewpoints that provide high-entropy observations
are anticipated to be more informative, as they are capable of
reducing entropy more effectively than those that provide low-
entropy observations. Consequently, we estimate the expected
information gain for an observation at a given viewpoint by
computing the weighted sum of entropy of the grid cells that
are visible from that viewpoint. In (11), O, refers to the set
of coordinates of the visible grid cells from viewpoint t, while
P(j, k) assigns weights to the points based on a Gaussian func-
tion, computed from their distance to the geometric center of O.
This approach incentivizes the controller to prioritize front-on
views of high-entropy areas over peripheral views. To predict
the optimal viewpoint for the next observation, we calculate the
utility of relocating the viewpoint directly above each cell in
M. This utility approximates the desirability of each potential
viewpoint and is computed using (12)

E[I(M,t)]~ > P(j,k)-H(q,) (11)
7,k€0;
U(M,t) = E[I(M,t)] —~r(t). (12)

The effectiveness of selecting the viewpoint is determined
by the potential benefits and costs associated with the motion
to that viewpoint, as indicated by the function

t, — Zmin )
r(t) = lltay — Cayll - (1 = ——— ).
( ) H Ty :ry” ( Zmax — Zmin

The value of this function is determined by the exploration
cost parameter 7y, which can be adjusted to balance the tradeoff
between exploration and exploitation. To incentivize the con-
troller to prioritize areas near the best detected grasp, rather than
exploring irrelevant and distant points, the cost is calculated
as the horizontal distance from the current viewpoint to the
grid cell with the highest average grasp quality, centered at
position c.

The second term in the cost function is determined by the
vertical position of the camera in the trajectory, denoted as t,.
At the start of the trajectory, the cost is set to zero to encourage
exploration of the workspace. As the end-effector descends, the
cost increases linearly, motivating the controller to converge
to the optimal grasp. To move in the direction of maximum
utility, the horizontal velocity generated by the controller is
Vgy = U (M, t).

2) Algorithm: The MP-PC process is outlined in Algo-
rithm 1. In the beginning, the height 2, of the robot’s end-
effector is fixed and the horizontal position is roughly restricted
near the center (z,y) of the workspace. MP-PC is used to plan
the trajectory of the robot arm when the height of the end-
effector is greater than z;,. During the motion of the manip-
ulator, if the position of the end-effector is higher than z,,,
it will continuously call DHRNet. If there is no peak in the
grasping quality map Q, a conservative method will be adopted
for horizontal detection. Here, we use the 3 x 3 matrix as a filter
and do convolution directly with the grasp detection quality

13)
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Algorithm 1: MP-PC

Input: zmin, 2Zmax, T,y
Output: goal
1 The initial position of robot end-effector: to = (x, y, Zmax) ;
2 t=1ty;
// t is the current position of the robot
end-effector.
3 while ¢2] >=t,,;, do

4 v, = const ;
5 Q, W, © = DHRNet(I) ;
// 1 is current depth image.
6 if exist_peak() then
7 | vey =U(M, 1)
8 else
9 | vy =a * U(M,t)
10 end
no | s=(a",y") = agmax Qelly) ;
/ * * /<I,y)€Q* * * *

2 | w=Wy], 0 =0[z"][y*], g = Q[z"][y"];
B | g ={s0,w q};
4| g=Ley(Lic(g)) ;
15 Store g in the array B ;
16 end
17 find g* = argmax ¢, B=10

geB

18 return g*;

map Q to determine whether there is a peak. If there are points
greater than the threshold in the new feature map, the detection
result is considered reliable, that is, the function exist_peak() in
Algorithm 1 returns True (lines 67 in Algorithm 1). Otherwise,
it will aggressively move horizontally in the direction of high
entropy (lines 89 in Algorithm 1). The robot calculates the
position and attitude with the highest possibility of grasping and
the width of the gripper according to the quality score map Q,
and transfers it to the grasping representation g in the world co-
ordinate system O,, through coordinate transformation. When
the height is not lower than z.,, the robot arm will save all
stored g into the grabbing experience pool B, and finally select
g with the highest grasping score ¢ and clear the experience
pool B (lines 11-18 in Algorithm 1).

IV. EXPERIMENT

In this section, we present a series of comprehensive exper-
iments to evaluate our framework by answering the following
three questions.

1) Is the grasp detection algorithm DHRNet superior to

other state-of-the-art grasping detection algorithms?

2) What are the benefits of maintaining high resolution fea-
ture maps and fusing feature maps of different scales
in DHRNet?

3) Can the DHRNet and MP-PC based approach success-
fully grasp unseen, thin or stacked objects?

In the subsequent subsections, we first provide a brief in-
troduction to the dataset and experimental details in Section
IV-A. To address the first question, we compare our method
with the current state-of-the-art methods [7], [8], [15], [20] on
the Cornell and Jacquard datasets in Section IV-B. We demon-
strate that our method is effective in improving performance on
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TABLE I
PARAMETERS USED DURING EXPERIMENTS
Parameter Value
J, K Grid Map Size 68 cm
u Grid Cell Size 5 mm
N_q Quality Bins 10
N_¢ Angle Bins 18
Exploration Cost Varied
|vz] End-effector Vertical Velocity (During Reach) — 0.05 m/s
« Attenuation factor 0.2
Zmax initial Height 50 cm
Zmin Final Height 17.5cm

these datasets. To answer the second question, we conduct two
ablation experiments in Section IV-C to evaluate the efficacy
of the high-resolution and parallel fusion design. Finally, we
evaluate the performance of our framework against other exist-
ing frameworks in various complex scenarios under real-world
cases (Section IV-D).

A. Dataset and Experiment Setup

The Cornell grasping dataset [12] consists of 885 images
with a resolution of 640 x 480 pixels, each featuring multiple
objects that can be grasped. Given the relatively small size of
the dataset, various data-augmentation techniques have been
utilized to prevent overfitting, such as rotation, zooming, and
random cropping. To further evaluate the performance of DHR-
Net, we have tested it on the Jacquard dataset [13], which
was generated using CAD models in a simulator. The Jacquard
dataset is significantly larger, containing over 50000 images
spanning 11000 object categories, with more than 1 million
annotated grasp labels available for analysis.

Implementation Details: DHRNet is implemented by Py-
Torch, and the entire grasp detection system is running on the
Ubuntu 18.04 desktop with an Intel Core 19 CPU and a Geforce
NVIDIA RTX3090 GPU. For our high-resolution grasp model,
we utilize AdamW optimizer [31] with an initial learning rate
of 1le=* and weight decay of 5e~2. The input resolution is
cropped to 224 x 224 and the input batch is I(N,C, H,W).
The momentum of the BN layer is set to 0.1. The batch size is
set as 32 and the epoch is set as 50.

To conduct physical world experiments, we utilized 7 degrees
of freedom (DoF) Franka robot equipped with parallel grippers
for grasping. To ensure accurate prediction of grasping position
and pose, a RealSense D435 RGB-D camera is mounted on
the robot’s end-effector. For real-time control of the robot, an
Ubuntu real-time kernel is used. Additionally, we used a sepa-
rate computer with a 3.6GHz Intel 17-9700K CPU and GeForce
RTX 2080 Super GPU for network deployment and computa-
tion. The system is built on top of the Robot Operating System
(ROS). The parameters of the variables in the experiment are
shown in Table I.

B. Experimental and Analysis in Datasets

The performance of DHRNet is evaluated on the Cornell
and Jacquard datasets. To mitigate the risk of overfitting
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(a)-(d) are heatmap demonstrations of the samples in the Cornell dataset under the DHRNet prediction. The upper left corner is the original image,

angle = widih

©

[C)

the upper right corner is the image of grasping quality Q predicted by DHRNet, the lower left corner is the image of grasping width W, and the lower right

corner is the image of grasping angle ©.

TABLE II
ACCURACY ON CORNELL GRASPING DATASET

Channel Accuracy (%)
Method W oW
Fast Search [5] RGB-D 60.5 58.3
GG-CNN [9] D 73.0 69.0
SAE [12] RGB-D 73.9 75.6
ResNet-50x2 [18] RGB-D 89.2 88.9
AlexNet, MultiGrasp [6] RGB-D 88.0 87.1
STEM-CaRFs [32] RGB-D 88.2 87.5
GRPN [33] RGB 88.7 -
Two-stage closed-loop [34] | RGB-D 85.3 -
GraspNet [20] RGB-D 90.2 90.6
ZF-net [7] RGB-D 93.2 89.1
E2E-net [10] RGB 98.2 -
D 93.2 94.3
GR-ConvNet [8] RGB 96.6 95.5
RGB-D 97.7 96.6
D 95.2 94.9
TF-Grasp [15] RGB 96.78 95.0
RGB-D 97.99 96.7
D 98.86 + 0.43 | 96.5 + 0.47
DHRNet RGB 98.05 + 0.29 | 96.5 + 0.43
RGB-D | 99.17 + 0.37 | 97.3 + 0.82

due to the small size of the dataset, we performed a fivefold
cross-validation using the evaluation criteria from the
image perspective (IW) and the object perspective (OW),
as in the works of [6], [12], [18]. The input patterns and
run times are compared and presented in Table II. Our
proposed DHRNet achieved the best performance on the
Cornell dataset for three different channels, RGB, D, and
RGB-D, and two different evaluation criteria (imagewise and
objectwise). This indicates that our method has better feature
extraction capability and robustness. We also visualized
part of the validation images from the Cornell dataset to
demonstrate the performance of DHRNet. Fig. 4 presents the
experiment results, displaying both the original image and the
corresponding heat map, which highlights the recommended
grasp positions and their respective widths and angles. To
evaluate the real-time performance of DHRNet in physical
experiments, we performed a run-time analysis and compared
it with existing methods. Fig. 5 presents the results of this
analysis. Although our architecture retains high-resolution
feature maps and concatenates branches, no significant

Runtime Comparison on Cornell grasping dataset

Time (ms)

Fig. 5. Run times of the different methods. Run times less than 100 ms
(corresponding to the yellow dashed line in the figure) do not affect
motion planning.

The accurancy on Jacquard dataset
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Fig. 6. Accuracy of different methods on the Jacquard dataset.

run-time advantage is observed over existing methods.
However, we have improved the accuracy while maintaining
real-time performance. We established a threshold value of
100 ms to guarantee real-time performance, and our method
successfully meets this requirement, as shown in the analysis.
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Visualization of DHRNet prediction results on multiple datasets, where (a) and (b) is the Cornell dataset, (c) is the Jacquard dataset, and (d) is the

Multi-object dataset. The top five rectangles, highlighted in blue, orange, green, red, and purple, correspond to the locations with the highest probability in
the grasping prediction heatmap Q. If the rectangles are too close, only the ones with the higher probability of grasping are displayed using nonmaximum

value suppression.

The Jacquard dataset is a synthetic dataset comprising 54 000
distinct scenes with 11000 objects and 1.1 million captured
annotations. We partitioned this dataset into a 90% training
set and a 10% validation set. As shown in Fig. 6, our method
demonstrated high performance on all three channels of RGB,
Depth, and RGB-D. Moreover, the depth images and RGB
images exhibit a close correlation on this dataset, as the objects
and background are relatively easy to distinguish and align
closely with the contour boundaries of the objects.

To show the effectiveness of DHRNet, we visualize the pre-
dicted grasping rectangles across multiple datasets in Fig. 7. We
use the network parameters trained on the Cornell dataset, and
the figures show the results for the Cornell dataset [Fig. 7(a)
and 7(b)], the Jacquard dataset [Fig. 7(c)], and a multiobject
dataset [Fig. 7(d)]. These results clearly demonstrate that our
method outperforms existing methods on these datasets.

C. Ablation Studies

Our DHRNet is conceptually different from the traditional
design in the robotics community. In contrast to the con-
ventional models that build serial convolutions from high-
resolution feature maps to low-resolution maps, our grasping
model always maintains high-resolution representation through
the parallel branch. To evaluate the role of each component, ab-
lation experiments are carried out on the DHRNet. Fig. 8 shows
the precision achieved by the network with different architec-
tures after 10 ten epochs of training, where the first is the fully
convolutional neural network (FCN) [35]. Clearly, it achieves
an accuracy of about 60% after 10 ten epochs. By adding
a residual block [36], the precision is significantly improved
because it can enhance the propagation of the gradient and
effectively avoid network degradation. It achieves an accuracy
of 73% after ten epochs. In contrast to adding residual blocks
to the original CNN, we utilize the U-Net as the backbone in
our approach and achieve a similar performance to that of the
FCN with residual blocks after ten epochs. The original CNN
architecture is susceptible to information loss due to the pooling
of layers and fixed receptive fields of the convolutional kernel.
The introduction of residual connections in our DHRNet model
addresses this issue and improves CNN’s performance. The

Accuracy for Different Network Architectures
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Fig. 8. Accuracy for different network architectures after ten epochs in

Cornell datasets.

U-Net architecture employs skip connections to merge detailed
information from lower layers to higher layers, facilitating
feature fusion and achieving the best results in a nonparallel
architecture. However, all the aforementioned methods undergo
downsampling and upsampling processes, inevitably resulting
in spatial information loss when the objects are small and may
occupy only a few pixels. Such downsampling may lead to in-
correct grasp predictions. To overcome this limitation, DHRNet
maintains several feature maps of different sizes simultaneously
and allows information interaction between feature maps of
different sizes. Our approach achieves an accuracy of 81%
with only ten epochs of training, which is significantly better
than other architectures. This is because our approach leverages
rich semantic information from the low-resolution feature maps
while preserving the accurate spatial information embedded in
the high-resolution feature maps.

In order to investigate the impact of fused information from
the last feature, we performed an additional ablation experiment
using the architecture depicted in Fig. 9. We evaluated the
performance in the Cornell and Jacquard datasets using the
structure shown in Fig. 10 and observed that layer fusion signif-
icantly enhances the prediction capacity of the network across
all three channels of RGB, RGB-D, and depth. Our experiments
demonstrate that incorporating high-resolution representation
and parallel branches in our network not only accelerates the
network training but also enhances its performance.
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(a) (b)

Fig. 9. (a) Features of all branches except the highest resolution branch are
combined to predict the corresponding grasp configuration. (b) Features of all
different resolution branches are combined to predict the corresponding grasp.
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Fig. 10.  Performance on the Cornell and Jacquard datasets w/o layer fusion.
Ablation study in (a) Corenll and (b) Jacquard.

TABLE III
RESULTS FOR PHYSICAL SETUP

Method Physical Grasp ~ Success Rate (%)
Morrison et al. [9] 88/100 88%
Lenz [12] 76/100 76%
Pinto [37] 64/100 64%
Wang [15] 87/100 87%
DHRNet (Ours) 91/100 91%

D. Experiments in Real Physical Environments

In this section, we present the experimental evaluation of
our method in comparison to other state-of-the-art methods in
physical environments. The results are summarized in Table II1.
Specifically, to test the robustness of our method, we selected
GG-CNN [9] and TF-Grasp [15] methods as control groups.
In addition, we conducted experiments in three challenging
scenarios in the dataset, including grasping unseen objects, thin
objects, and stacked objects. The objective of these experiments
was to demonstrate the effectiveness of our proposed approach
in challenging real-world scenarios where object recognition
and motion planning play a crucial role in achieving success-
ful grasping.

1) Unseen Object: To evaluate the generalization capability
of our proposed method to unseen objects, we conducted ex-
periments using objects that were not included in the training
dataset, as shown in Fig. 11. Specifically, we compared the
performance of our method with two baseline methods on these
unseen objects, and the results are summarized in Table IV. The
experimental results demonstrate that our DHRNet outperforms
GG-CNN [9] and TF-Grasp [15] methods in terms of grasp
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Fig. 11.

Unseen toys not in the datasets.

success rate. Furthermore, we observed that applying the grasp
detection algorithm in combination with MP-PC can lead to
a slight improvement in the grasp success rate for previously
unseen objects compared to the MVP method [9].

2) Thin Object: In the experiments of grasping thin objects,
we chose a U-shaped disk with the same background color as
the target object, making it difficult to distinguish it from the
background with RGB or depth information, especially when
the robot arm was placed far away from the target object. In
the initial stage, the camera is too far away from the object, re-
sulting in no information for all grasp detection methods, which
leads to the end-effector randomly choosing a direction to move
all the time. If the MVP controller is used, the horizontal speed
of the end-effector is very fast and it is very easy to lose the view
of the target object before the detection algorithm can detect the
object, thus the end-effector continues to move in the original
direction until the singularity occurs. This is why robots using
MVP controllers are prone to stuck-shield pauses, which reduce
grasping efficiency.

To overcome this problem, we use the MP-PC controller,
which is able to adopt a conservative strategy to significantly
reduce horizontal displacement when there is no peak in the heat
map and quickly adjust the strategy to change the direction of
horizontal movement after the object is subsequently detected.
As shown in Fig. 12, we intercepted the graphs of the grasp
quality of different grasp detection methods that intergrade with
MP-PC after 2 s of the initial phase. In Fig. 12(a), the GG-
CNN still fails to detect the USB flash drive and lacks useful
information to guide the motion planning approach. As a result,
the robot arm continues to explore in the original direction,
and eventually the robot enters a singular point and triggers the
protection mechanism, thus failing to grasp it successfully. In
contrast, as shown in Fig. 12(b), TF-Grasp is able to detect a
more suitable grasping point in the initial stage, but the image
is significantly disturbed due to the unevenness of the table-
cloth and the small size of the U disk, resulting in the grasp-
ing prediction being not necessarily accurate and may find
pseudograsping points. Furthermore, as shown in Fig. 12(c), our
method has been able to produce relatively accurate predictions
at 2 s, enabling it to accurately determine the next viewpoint
based on the information obtained from the heat map during
execution. DHRNet produced more accurate predictions as the
robot approached the target object and was significantly more
resistant to interference than the other two methods. Finally,
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TABLE IV
SUCCESS RESULT IN UNSEEN OBJECTS
Objects/Methods GG-CNN+MVP GG-CNN+MP-PC TF-Grasp+M VP TF-Grasp+MP-PC DHRNet+MVP DHRNet+MP-PC
Toyl 6/10 6/10 8/10 8/10 8/10 9/10
Toy2 6/10 6/10 7/10 8/10 8/10 10/10
Toy3 5/10 6/10 5/10 7/10 7/10 7/10
Toy4 7/10 8/10 8/10 8/10 9/10 10/10

-
Py

(a) (b)

Fig. 12.

()

This study presents the visualization results of different grasp detection methods in the motion planning process. Specifically, we evaluated three

methods: (a) GG-CNN; (b) TF-Grasp; and (c) DHRNet. The first row of Fig. 12 displays the heat map and RGB images during the initial phase of motion
planning, while the second row displays the heat map and RGB images during the intermediate phase of motion planning.

Fig. 13. (a)-(d) Shows the whole process of robot grasping a thin object, for more details refer to the video https://youtu.be/cfLAdKWo4u8.
TABLE V
RESULT IN THIN OBJECTS
Method GG-CNN+MVP GG-CNN+MP-PC TF-Grasp+MVP TF-Grasp+MP-PC DHRNet+MVP DHRNet+MP-PC
Rate 3/10 6/10 4/10 6/10 7/10 9/10

Fig. 13 depicts the grasping process in the experiment, showing
that DHRNet achieves smooth trajectories when dealing with
even thin objects. Overall, our method DHRNet outperforms
the other two methods in detecting and grasping thin objects.
In the experiments, we identified two significant factors
strongly associated with the success rate of our approach. The
flatness of the tablecloth plays a pivotal role. Given the rela-
tively low height of the USB flash drive, small deviation from
a flat tablecloth surface can lead to misinterpretation by our
DHRNet. That is, the network may erroneously treat elevated
portions of the tablecloth as the target object. This sensitivity to
depth information is another key characteristic of our network.
During the initial design phase, there is a conflict between false
detection and nondetection when dealing with objects at varying
depths. In this context, we consciously opted for prioritizing
false detection over nondetection, so that the network’s sen-
sitivity to object depth would not result in missed detections.
Additionally, the cleanliness of the table surface has a notable

impact on the input to the RGB camera and, subsequently, the
accuracy of the prediction results. To mitigate this issue, we
flatten the tablecloth and incorporate a separate depth camera
as input source. The specific outcomes of these adjustments are
detailed in Table V.

3) Stacked Object: For the task of grasping stacked ob-
jects and placing them in the basket, different methods are
compared based on the time elapsed in completing the task.
In order to minimize the impact of the initial conditions, we
followed the same stacking pattern each time. Table VI shows
that, although all methods were able to complete the task,
DHRNet can complete the task faster than the other two grasp
detection algorithms with the same motion planning controller.
We believe this is due to the fact that DHRNet can maintain
high resolution feature maps and fuse feature maps of different
sizes, so that it can provide more accurate grasp predictions and
avoid collisions during grasping. Comparing MP-PC and MVP,
we observe that MP-PC slightly outperforms M VP, although the
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TABLE VI
RESULT IN STACKED OBJECTS

IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 5, NO. 6, JUNE 2024

Time/Methods GG-CNN+MVP GG-CNN+MP-PC

TF-Grasp+MVP

TF-Grasp+MP-PC DHRNet+M VP DHRNet+MP-PC

Second 721 555 421

255 168 128

Fig. 14.

difference is subtle. This is because all three grasp detection
algorithms produce relatively good grasp quality maps, result-
ing in a low probability of entering singularities. Therefore,
the main difference is caused by the grasp detection algorithm,
rather than motion planning methods.

V. CONCLUSION

This article presents a novel framework for robotic visual
grasping that leverages high-resolution representations and par-
allel branches to improve the performance of perception tasks.
Our approach diverges from traditional stacked convolutional
layers by utilizing high-to-low-resolution convolution streams
and fusion between different resolutions. Our physical experi-
ments, which include comparisons with mainstream baselines,
demonstrate that our method significantly outperforms existing
techniques on various datasets. Our study also underscores the
importance of accurate spatial information and motion planning
for rich semantic information, particularly for objects located
far from the initial camera. Future work will focus on exploring
challenging scenarios, such as grasping objects with ambiguous
depth information.
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